Multiple Data Products Reveal Long-Term Variation Characteristics of Terrestrial Water Storage and Its Dominant Factors in Data-Scarce Alpine Regions

نویسندگان

چکیده

As the “Water Tower of Asia” and “The Third Pole” world, Qinghai–Tibet Plateau (QTP) shows great sensitivity to global climate change, change in its terrestrial water storage has become a focus attention globally. Differences multi-source data different calculation methods have caused uncertainty accurate estimation storage. In this study, Yarlung Zangbo River Basin (YZRB), located southeast QTP, was selected as study area, with aim investigating spatio-temporal variation characteristics (TWSC). Gravity Recovery Climate Experiment (GRACE) from 2003 2017, combined fifth-generation reanalysis product European Centre for Medium-Range Weather Forecasts (ERA5) Global Land Data Assimilation System (GLDAS) data, were adopted performance evaluation TWSC estimation. Based on ERA5 GLDAS, balance method (PER) summation (SS) used estimate storage, obtaining four sets TWSC, which compared derived GRACE. The results show that estimated by SS based GLDAS is most consistent time-lag effect identified PER respectively, 2-month 3-month lags. Therefore, further explore long-term temporal spatial evolution YZRB. During period 1948–2017, showed significantly increasing trend; however, an abrupt detected around 2002. That is, trend before 2002 (slope = 0.0236 mm/month, p < 0.01) but decreasing ?0.397 after Additional attribution analysis conducted, indicating that, snow equivalent, soil moisture dominated TWSC. terms distribution, large heterogeneity, mainly middle reaches high intensity human activities Parlung Basin, distributed glaciers. obtained can provide reliable support technical means exploring mechanism data-scarce alpine regions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

How Long Is Long-Term Data Storage?

In the context of archiving of physical documents, long-term storage has long been accepted to mean centuries. Digital documents are much more ephemeral, so archivists should be aware of the inherent limitations of the technologies available for preservation of digital data. This paper compiles the results of several studies on this subject, in addition to presenting new findings on what can be...

متن کامل

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13122356